Hypergeometric Distribution Calculator

Calculate probabilities for sampling without replacement using the hypergeometric distribution.

Distribution Parameters

Calculation Type

Hypergeometric Distribution Formula

The probability mass function of the hypergeometric distribution is:

P(X=k)=(Kk)(NKnk)(Nn)P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}

Where:

  • NN = Population size
  • KK = Number of success states in the population
  • nn = Sample size
  • kk = Number of success states in the sample
  • (nk)\binom{n}{k} = Binomial coefficient (n choose k)

The binomial coefficient is calculated as:

(nk)=n!k!(nk)!\binom{n}{k} = \frac{n!}{k!(n-k)!}

Distribution Properties

Mean (μ): n × (K/N) = 4.0000

Variance (σ²): n × (K/N) × ((N-K)/N) × ((N-n)/(N-1)) =1.9592

Standard Deviation (σ): √(Variance) =1.3997

Hypergeometric Distribution Visualization